Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Brankov, Jovan G; Anastasio, Mark A (Ed.)Artificial intelligence (AI) tools are designed to improve the efficacy and efficiency of data analysis and interpretation by the human decision maker. However, we know little about the optimal ways to present AI output to providers. This study used radiology image interpretation with AI-based decision support to explore the impact of different forms of AI output on reader performance. Readers included 5 experienced radiologists and 3 radiology residents reporting on a series of COVID chest x-ray images. Four different forms (1 word summarizing diagnoses (normal, mild, moderate, severe), probability graph, heatmap, heatmap plus probability graph) of AI outputs (plus no AI feedback) were evaluated. Results reveal that most decisions regarding presence/absence of COVID without AI were correct and overall remained unchanged across all types of AI outputs. Fewer than 1% of decisions that were changed as a function of seeing the AI output were negative (true positive to false negative or true negative to false positive) regarding presence/absence of COVID; and about 1% were positive (false negative to true positive, false positive to true negative). More complex output formats (e.g., heat map plus a probability graph) tend to increase reading time and the number of scans between the clinical image and the AI outputs as revealed through eyetracking. The key to the success of AI tools in medical imaging will be to incorporate the human into the overall process to optimize and synergize the human-computer dyad, since at least for the foreseeable future, the human is and will be the ultimate decision maker. Our results demonstrate that the form of the AI output is important as it can impact clinical decision making and efficiency.more » « lessFree, publicly-accessible full text available April 10, 2026
-
Free, publicly-accessible full text available May 14, 2026
-
Purpose: Despite tremendous gains from deep learning and the promise of AI in medicine to improve diagnosis and save costs, there exists a large translational gap to implement and use AI products in real-world clinical situations. Adoption of standards like the TRIPOD, CONSORT, and CLAIM checklists is increasing to improve the peer review process and reporting of AI tools. However, no such standards exist for product level review. Methods: A review of the clinical trials shows a paucity of evidence for radiology AI products; thus, we developed a 10-question assessment tool for reviewing AI products with an emphasis on their validation and result dissemination. We applied the assessment tool to commercial and open-source algorithms used for diagnosis to extract evidence on the clinical utility of the tools. Results: We find that there is limited technical information on methodologies for FDA approved algorithms compared to open source products, likely due to concerns of intellectual property. Furthermore, we find that FDA approved products use much smaller datasets compared to open-source AI tools, as the terms of use of public datasets are limited to academic and non-commercial entities which preclude their use in commercial products. Conclusion: Overall, we observe a broad spectrum of maturity and clinical use of AI products, but a large gap exists in exploring the actual performance of AI tools in clinical practice.more » « less
An official website of the United States government

Full Text Available